Search results for "Infrared Spectra"
showing 10 items of 17 documents
Model, software and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements-I: N2(and ai…
2006
International audience; Absorption spectra of the infrared ν3 and ν4 bands of CH4 perturbed by N2 over large ranges of pressure and temperature have been measured in the laboratory. A theoretical approach accounting for line mixing is proposed to (successfully) model these experiments. It is similar to that of Pieroni et al. [J Chem Phys 1999;110:7717–32] and is based on state-to-state rotational cross-sections calculated with a semi-classical approach and a few empirical parameters. The latter, which enable switching from the state space to the line space, are deduced from a fit of a single room temperature spectrum of the ν3 band at 50 atm. The comparisons between numerous measured and ca…
Global frequency and intensity analysis of the / / / band system of 12 C 2 H 4 at 10 μm using the D 2h Top Data System
2016
Abstract A global frequency and intensity analysis of the infrared tetrad of 12C2H4 located in the 600 – 1500 cm − 1 region was carried out using the tensorial formalism developed in Dijon for X2Y4 asymmetric-top molecules. It relied on spectroscopic information available in the literature and retrieved from high-resolution Fourier transform infrared spectra recorded in Brussels in the frame of either the present or previous work. In particular, 645 and 131 line intensities have been respectively measured for the weak ν10 and ν4 bands. Including the Coriolis interactions affecting the upper vibrational levels 101, 71, 41 and 121, a total of 10 757 line positions and 1645 line intensities ha…
Model, software, and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements. I. N2 (and…
2006
Absorption spectra of the infrared ν3 and ν4 bands of CH4 perturbed by N2 over large ranges of pressure and temperature have been measured in the laboratory. A theoretical approach accounting for line mixing is proposed to (successfully) model these experiments. It is similar to that of Pieroni et al. [J Chem Phys 1999;110:7717–32] and is based on state-to-state rotational cross-sections calculated with a semi-classical approach and a few empirical parameters. The latter, which enable switching from the state space to the line space, are deduced from a fit of a single room temperature spectrum of the ν3 band at 50 atm. The comparisons between numerous measured and calculated spectra under a…
Model, software and database for line-mixing effects in the nu3 and nu4 bands of CH4 and tests using laboratory and planetary measurements - II : H2 …
2006
International audience; The absorption shapes of the nu(2), nu(3) and nu(4) infrared bands of CH4 perturbed by H-2 in large ranges of pressure and temperature have been measured in the laboratory. In order to model these spectra, the theoretical approach accounting for line-mixing effects proposed for CH4-N-2 and CH4-air and successfully tested in the companion paper (1), is used. As before, state-to-state rotational rates are used together with some empirical parameters that are deduced from a fit of a single room temperature spectrum of the nu(3) band at about 50 atm. The comparisons between measured and calculated spectra in the nu(3) and nu(4) regions under a vast variety of conditions …
Colloidal plasmonic back reflectors for light trapping in solar cells.
2014
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…
Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties
2019
The vibrational features of eight interstitial nitrogen related defects in silicon have been investigated at the first principles quantum mechanical level by using a periodic supercell approach, a hybrid functionals, an all electron Gaussian type basis set and the Crystal code. The list includes defects that will be indicated as Ni (one N atom forming a bridge between two Si atoms), Ni-Ns (one interstitial and one substitutional N atom linked to the same Si atom), Ni-Ni (two Ni defects linked to the same couple of silicon atoms) and Ni-Sii-Ni (two Ni defects linked to the same interstitial silicon atom). Four 〈0 0 1〉 split interstitial (dumbbell) defects have also been considered, in which …
Raman scattering and infrared reflectivity in [(InP)5(In0.49Ga0.51As)8]30 superlattices
2000
6 páginas, 6 figuras, 1 tabla.
Near-Infrared Spectra of Water Confined in Silica Hydrogels in the Temperature Interval 365−5 K
2002
We have used a sol−gel technique to obtain optically transparent hydrogels in which water is trapped within a tridimensional disordered silica matrix. A suitable aging of these hydrogels enables to have transparent noncracking samples down to cryogenic temperatures. We report the optical absorption spectra, in the near-infrared region, of water trapped in our silica hydrogels, measured in the temperature range 365−5 K, and we compare them with the same spectra of liquid water, measured in the temperature range 365−263 K. The data show that it is possible to have noncrystallizing water even at 5 K: indeed, the overtone bands at ∼1.41 μm and at ∼1.155 μmtypical of “weakly bonded” water molec…
Role of Ce3+ as sensitizer for the infrared luminescence of phosphosilicate Er/Yb doped glasses
2012
The luminescence properties of the Yb/Er-doped phosphosilicate preforms used for the design of active optical fibers were investigated under a tunable laser excitation from ultraviolet to infrared domain. We demonstrated that codoping the glass matrix with Ce3+ ions strongly influences the infrared emission associated with Er3+ ions, it enhances the energy transfer from Yb3+ to Er3+ ions, and it provides an additional ultraviolet excitation channel for the emission of both Yb3+ and Er3+ ions. The excitation/emission pathways are discussed on the basis of models proposed in literature for other systems.
The infrared and Raman spectra of solid tridehydropeptides : influence of ΔAla and ΔPhe on the spectral profile
2012
Abstract A series of solid tripeptides Boc-Gly-X-Gly-OMe (X = dehydroalanine (ΔAla), dehydrophenylalanine (ΔPhe)) was investigated by Raman scattering and Fourier transform infrared spectra to examine the conformational marker bands of the unsaturated residue. The observed fundamental modes gave us the opportunity to analyze structural features that change due to the substitution of Ala by ΔAla and due to the different spatial arrangement of ΔPhe ( Z and E isomers). In addition, we showed the alteration of the spectral profile when the large size residue (Phe) is introduced into the backbone of the peptide with ΔPhe (in Boc-Gly-Δ (Z) Phe-Phe-OMe). The frequency ranges of interest included t…